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Why is LC GHG emissions an important metric?

* GHG emissions reduction an important driver for alternative fuels uptake

» Accurately estimating emissions important for policy objectives and for fair
comparison of chains

* Definition, methodological and data issues affect the comparison of different
chains

 Different fuel chains have very different characteristics, emissions profiles
across the chain (and beyond), and uncertainties




What affects LC GHG emissions estimates?

* GHG emissions considered
e Fuel chain characteristics (inc technology, operations, location, timing)
* Boundaries

e Co-products

e (Data) uncertainties




GHG emissions — what emissions and where they occur

Figure ES-3.
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GHG emissions — what emissions and where they occur

Soy biodiesel indicative emissions
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GHG emissions — what emissions and where they occur

Effect of fugitive methane emissions on LNG
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Fig. 4 Life cycle GHG emissions versus the amount of fugitive emissions of methane
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Fuel chain characteristics — effect of location and practices

Carbon intensity — calculated according to RED method, using country specific data from RTFO
(g CO2e/MJ)
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Fuel chain characteristics — effect of location and practices

Figure ES-4. Comparison of Diesel Fuel Greenhouse Gas Profiles from Various Studies

McCann, O &G Journal (1999), Wenezuela Yery Heawy Crude |
McCann, O&G Journal (1999, Yenezuela Heavy Crude |
McCann, O&G Journal {1999, Saudia Light Crude |
California LCFS (2007) - modified GREET Model |
McCann, O&G Journal (1999, Canadian Light Crude |
GM Study WTT (2001) |
EFA, OTAL (2008) Maximurm ‘v’alue: S Gl ThEen=ing

U.C. Davig, LEM (2003), ¥ear 2015 {uehicle tank).
GREET “er. 1.8b (2008], Year 2010 |
EPA, OTAG (2008 Average Value |
GREET Wer. 1.8b (2008], Year 2005 |
MREL Biodiesel Study (19%]_
EFA, OTAQD (2006) Minimum Value |

From Extraction (oil well}...

T | T T T T |
0.0 5.0 100 15.0 200 250 0.0 350 40.0
Life Cycle GHG Contribution {kg CO.E/MMBtu LHY of Fuel Delivered)

Source: DOE-NETL (2009)




Fuel chain characteristics — effect of location and practices

Mean monthly UK grid emissions in gCO2/kWh
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Boundaries

— effect of land use change on biofuels
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Source: E4tech The bottom portion of each bar is the default value with no land use change

The top portion shows the emissions from land use change




Boundaries — effect of market substitution effects
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Boundaries — effect of additional direct and indirect effects
on petroleum fuel production
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Boundaries — effect of embedded emissions

Mid-Size Gasoline

Mid-Size Gasoline
Full Hytand

Mid-Size Gasoline
FHEY

Mid-Size Gasoline
EREY

Mid-Size BV

Mid-Size FOV

M FProduction

5,000 10,000
Lifecycle CO: Emissions [kgCO.e]

B F ossil

Biofuel

15000 20000 25000 0 30,000

M Electicity W Disposal

Source: Ricardo (2011)



Co-products — effect of attributing emissions or credits

Example of biodiesel produced from a mix of vegetable oils and animal fat
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Co-products — effect of attributing emissions or credits

Influence of different allocation methods at refineries
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(Data) Uncertainty

Example of uncertainties associated with ILUC
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How can LC GHG emissions comparisons evolve?

* Harmonisation of definitions, methods and data
e Research and understanding to inform LCA
 Practicality for integration into policy making

 Flexibility for evolution with changing systems
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